# **Programme Specification**



| 1. Programme title                                                    | BSc (Hons) Mathematics and Data Science                         |
|-----------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                       | BSc (Hons) Mathematics and Data<br>Science with Foundation Year |
| 2. Awarding institution                                               | Middlesex University                                            |
| 3. Teaching institution                                               | Middlesex University                                            |
| 4. Details of accreditation by professional/statutory/regulatory body |                                                                 |
| professional/statutory/regulatory body                                |                                                                 |
| 5. Final qualification(s) available                                   | BSc (Hons) Mathematics and Data<br>Science                      |
|                                                                       | , ,                                                             |
|                                                                       | Science                                                         |
| 5. Final qualification(s) available                                   | Science DipHE Mathematics and Data Science                      |
| 5. Final qualification(s) available  6. Year effective from           | Science DipHE Mathematics and Data Science 2022 - 23            |

## 9. Criteria for admission to the programme

112-128 UCAS Tariff Points including GCSE Grade 4/C in English and mathematics, BBC-BBB including a C or above in mathematics.

In addition Middlesex University general entry requirements apply as outlined in the university's regulation B2. Applicants whose first language is not English are required to achieve 6.0 in IELTS overall (with a minimum of 5.5 in each component) or an equivalent qualification recognised by Middlesex University. The equivalence of qualifications from outside UK will be determined according to NARIC guidelines.

Please refer to the programme specification for the Foundation Year for criteria for admission to the <u>BSc (Hons) Mathematics and Data Science with Foundation Year programme</u>.

Advanced entry to the programme will be considered on a case-by-case basis.

### 10. Aims of the programme

The programme aims to:

• provide graduates with a broad knowledge of core areas of data science from a

- mathematical perspective, including statistics, data analysis, machine learning and software development;
- support students to develop the knowledge, skills and confidence that will allow them to compete in the job market;
- stimulate students' interest in developing their knowledge and understanding of contemporary methods in data science and the flexibility to apply these to industry problems.

## 11. Programme outcomes\*

#### A. Knowledge and understanding

On completion of this programme the successful student will have knowledge and understanding of:

- core areas of applied statistics and data science including machine learning and artificial intelligence;
- 2. core areas of mathematics and mathematical statistics including calculus and linear algebra;
- ethical issues related to developing and using mathematical and statistical models;
- programming and software design principles and their application to developing statistical models in authentic settings.

#### Teaching/learning methods

Students gain knowledge and understanding through participation and engagement in practice-based workshops and tutorials. Problem based lectures, online resources, workshops and tutorials will introduce students to content in a structured environment, whilst workshops, tutorials and labs will encourage exploration of concepts in a practical setting.

#### Assessment methods

Students' knowledge and understanding is assessed by small and medium sized projects and coursework assignments based on authentic data and problems. Communication is assessed via written reports, the creation of video content and the production of the final-year project. The effective use of computers is assessed in lab exercises and also on the final project.

#### B. Skills

On completion of this programme the successful student will be able to:

- formulate and solve problems creatively using a number of practical approaches;
- 2. interpret and communicate results from a statistical analysis;
- reflect on their learning and skills development, identifying opportunities for personal growth and career development;

#### Teaching/learning methods

Students learn skills through interaction in workshops, tutorials and labs. Practical skills will be developed by working on applications to authentic, real-world situations.

#### Assessment methods

Students' skills are assessed by small and medium sized projects and coursework assignments based on authentic data and problems. Communication is assessed via written reports, the creation of video

- 4. work effectively as a team member in a respectful and supportive way;
- 5. develop software that applies data science methodology to a concrete problem.

content and the production of the final-year project. The effective use of computers is assessed in lab exercises and also on the final project.

## 12. Programme structure (levels, modules, credits and progression requirements)

# 12. 1 Overall structure of the programme

#### Full-time/thick sandwich BSc Maths and Data Science

|         | Term 1                                | Term 2                              |
|---------|---------------------------------------|-------------------------------------|
| Year 1  | MSO1115 Calculus and Geometry         |                                     |
| i cai i | MSO1125 Mathematical Thinking         | MSO1135 Introduction to Programming |
|         | MSO1145 Probability and Data Analysis |                                     |
|         | MSO1165 Linear Algebra                | MSO1155 Mathematical Models         |

|                                | Term 1                                    | Term 2                            |
|--------------------------------|-------------------------------------------|-----------------------------------|
| Year 2                         | MSO2145 Problem Solving and Communication |                                   |
| MSO2400 Advanced Calculus MSO2 | MSO2700 Software Design                   |                                   |
|                                | MSO2300 Mathematical Statistics           |                                   |
|                                | MSO2510 Discrete Maths                    | MSO2520 Maths of Machine Learning |

| Placement | MSO3800 Placement* |
|-----------|--------------------|
| year      |                    |

|            | Term 1                                                    | Term 2  |
|------------|-----------------------------------------------------------|---------|
| Final Year | MSO3900 Project MSO3255 Neural Networks and Deep Learning |         |
| i mai roai |                                                           |         |
|            | option* option*                                           |         |
|            | option*                                                   | option* |

## \* optional modules

| MSO3550 Math. Techniques for Optimisation | MSO3340 Data Mining                 |
|-------------------------------------------|-------------------------------------|
| MSO3300 Stochastic Processes for Finance  | MSO3450 Cryptography and Blockchain |
| MSO3135 Graph Theory                      | MSO3335 Time Series                 |

## Part-time BSc Maths and Data Science

|        | Term 1                        | Term 2                              |
|--------|-------------------------------|-------------------------------------|
| Year 1 | MSO1115 Calculus and Geometry |                                     |
| 10011  | MSO1125 Mathematical Thinking | MSO1135 Introduction to Programming |

|         | Term 1                                | Term 2                      |
|---------|---------------------------------------|-----------------------------|
| Year 2  | MSO1145 Probability and Data Analysis |                             |
| 1 50. 2 | MSO1165 Linear Algebra                | MSO1155 Mathematical Models |

|         | Term 1                                    | Term 2                            |
|---------|-------------------------------------------|-----------------------------------|
| Year 3  | MSO2145 Problem Solving and Communication |                                   |
| . 54. 5 | MSO2400 Advanced Calculus                 | MSO2520 Maths of Machine Learning |

|        | Term 1                          | Term 2                  |
|--------|---------------------------------|-------------------------|
| Year 4 | MSO2300 Mathematical Statistics |                         |
| 100.   | MSO2510 Discrete Maths          | MSO2700 Software Design |

|        | Term 1                                    | Term 2  |
|--------|-------------------------------------------|---------|
| Year 5 | MSO3255 Neural Networks and Deep Learning |         |
|        | option*                                   | option* |

|        | Term 1       | Term 2              |
|--------|--------------|---------------------|
| Year 6 | option* MSO3 | 900 Project option* |
|        |              |                     |

# \* optional modules

| MSO3550 Math. Techniques for Optimisation* | MSO3340 Data Mining*                 |
|--------------------------------------------|--------------------------------------|
| MSO3300 Stochastic Processes for Finance*  | MSO3450 Cryptography and Blockchain* |
| MSO3135 Graph Theory*                      | MSO3335 Time Series*                 |

## 12.2 Levels and modules

Please refer to the programme specification for the Foundation Year for the modules to be taken during the foundation year of the <u>BSc (Hons) Mathematics and Data Science with Foundation Year</u> programme.

Level 4

| COMPULSORY | OPTIONAL | PROGRESSION  |
|------------|----------|--------------|
|            |          | REQUIREMENTS |

| Students must take all of<br>the following:<br>MSO1115, MSO1125,<br>MSO1135, MSO1145,<br>MSO1155, MSO1165. |                                                                              | Students must pass all modules in order to progress                                                                                                      |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level 5                                                                                                    |                                                                              |                                                                                                                                                          |
| COMPULSORY                                                                                                 | OPTIONAL                                                                     | PROGRESSION<br>REQUIREMENTS                                                                                                                              |
| Students must take all of<br>the following:<br>MSO2145, MSO2300,<br>MSO2400, MSO2510,<br>MSO2520, MSO2700  |                                                                              | Students must pass MSO2300, MSO2400, MSO2510, MSO2520, and MSO2700 in order to progress  Students must pass all modules to graduate with the named DipHE |
| Level 6                                                                                                    |                                                                              |                                                                                                                                                          |
| COMPULSORY                                                                                                 | OPTIONAL                                                                     | PROGRESSION<br>REQUIREMENTS                                                                                                                              |
| Students must take all of<br>the following:<br>MSO3255,<br>MSO3900                                         | Students on the Thick-<br>Sandwich mode of this<br>programme take<br>MSO3800 |                                                                                                                                                          |
|                                                                                                            | Remaining credit must be chosen from the following:                          |                                                                                                                                                          |
|                                                                                                            | Two from:<br>MSO3135, MSO3300,<br>MSO3550                                    |                                                                                                                                                          |
|                                                                                                            | Two from:<br>MSO3335, MSO3340,<br>MSO3450                                    |                                                                                                                                                          |

| 12.3 Non-compensatable modules |             |  |  |  |
|--------------------------------|-------------|--|--|--|
| Module level                   | Module code |  |  |  |
| 6                              | MSO3900     |  |  |  |

# 13. Information about assessment regulations

University assessment regulations apply.

### 14. Placement opportunities, requirements and support

Students on the TKSW mode take a 12-month placement at the end of year 2. The university's MDXWorks guide students to find and secure placements. They also provide students with appropriate guidance and support in preparation for, during and after placement. The placement forms the basis for an assessed report based on the organisation. At the start of the placement students are allocated an individual supervisor who provides support and advice for the duration of the project.

#### 15. Future careers / progression

Graduates from this programme are expected to enter careers in any number of areas where data science, statistics or machine learning are applied to deal with big data.

More generally, graduate of mathematics courses are employed as professional mathematicians in many organisations, for example GCHQ, where they work on solving abstract problems that directly influence government policy.

### 16. Particular support for learning (if applicable)

- · Maths Help Centre
- · iPads and Apple Pencils for each student
- English Language Support
- Learning Resources
- Programme Handbook and Module Handbooks
- Induction and orientation programme
- Access to student counsellors
- Student e-mail and internet access

| 17. JACS code (or other relevant coding system) | G1G3        |
|-------------------------------------------------|-------------|
| 18. Relevant QAA subject benchmark group(s)     | MSOR (2019) |

# 19. Reference points

QAA Guidelines for programme specifications

QAA Subject Benchmark Statement: MSOR (2019)

UK Quality Code for Higher Education (Quality Code) (2018) and the UK Quality Code - Advice and Guidance: Assessment (2018) and External Expertise (2018).

Middlesex University Regulations, Academic Policy Statement APS18: Curriculum Design Policy (2018), Middlesex University Regulatory Framework Code of Assessment Practice, Academic Policy Statement APS29: Anonymous Marking Assessment Policy (2020), Equality and Diversity Policy and Codes of Practice (HRPS8), specifically code of practice 7: Curriculum, and Pedagogy and Assessment.

#### 20. Other information

Please note programme specifications provide a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve if s/he takes full advantage of the learning opportunities that are provided. More detailed information about the programme can be found in the rest of your programme handbook and the university regulations.

# Curriculum map for BSc Mathematics and Data Science

This section shows the highest level at which programme outcomes are to be achieved by all graduates, and maps programme learning outcomes against the modules in which they are assessed.

# **Programme learning outcomes**

| Knowled | dge and understanding                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------|
| A1      | core areas of applied statistics and data science including machine learning and artificial intelligence                |
| A2      | core areas of mathematics and mathematical statistics including calculus and linear algebra                             |
|         |                                                                                                                         |
| A3      | ethical issues related to developing and using mathematical and statistical models                                      |
| A4      | programming and software design principles and their application to developing statistical models in authentic settings |
| Skills  |                                                                                                                         |
| B1      | formulate and solve problems creatively using a number of practical approaches                                          |
| B2      | interpret and communicate results from a statistical analysis                                                           |
| В3      | reflect on their learning and skills development, identifying opportunities for personal growth and career development  |
| B4      | work effectively as a team member in a respectful and supportive way                                                    |
| B5      | develop software that applies data science methodology to a concrete problem                                            |

| Programme outcomes                      |    |    |    |    |    |    |    |    |  |  |  |  |
|-----------------------------------------|----|----|----|----|----|----|----|----|--|--|--|--|
| A1                                      | A2 | A3 | A4 | B1 | B2 | В3 | B4 | B5 |  |  |  |  |
| Highest level achieved by all graduates |    |    |    |    |    |    |    |    |  |  |  |  |
| 6                                       | 6  | 6  | 6  | 6  | 6  | 6  | 5  | 6  |  |  |  |  |

| Module Title                             | Module Code |    |    |    |    |    |    |    |    |    |
|------------------------------------------|-------------|----|----|----|----|----|----|----|----|----|
|                                          | by Level    | A1 | A2 | A3 | A4 | B1 | B2 | В3 | B4 | B5 |
| Linear Algebra                           | MSO1165     | Х  | Х  |    |    |    |    |    |    |    |
| Calculus and Geometry                    | MSO1115     | Х  | Х  |    |    |    |    |    |    |    |
| Mathematical Models                      | MSO1155     | Х  | Х  |    | Х  |    |    |    |    |    |
| Mathematical Thinking                    | MSO1125     |    | Х  |    |    | Х  |    |    |    |    |
| Introduction to Programming              | MSO1135     |    |    |    | Х  |    |    |    |    | Х  |
| Probability and Data Analysis            | MSO1145     | Х  | Х  |    | Х  |    | Х  |    |    | Х  |
| Problem Solving and Communication        | MSO2145     |    |    | Х  | Х  | Х  | Х  | Х  | Х  |    |
| Discrete Mathematics                     | MSO2510     |    | Х  |    |    |    |    |    |    | Х  |
| Mathematics of Machine Learning          | MSO2520     | Х  |    | Х  |    | Х  | Х  |    |    |    |
| Mathematical Statistics                  | MSO2300     | Х  |    |    | Х  | Х  | Х  |    |    |    |
| Advanced Calculus                        | MSO2400     | Х  | Х  |    |    |    |    |    |    |    |
| Software design                          | MSO2700     |    |    |    | Х  | Х  |    |    | Х  | Х  |
| Graph Theory                             | MSO3135     | Х  | Х  |    |    |    |    |    |    |    |
| Stochastic Processes for Finance         | MSO3300     | Х  |    |    |    |    | Х  |    |    |    |
| Time Series                              | MSO3335     | Х  |    |    |    |    | Х  |    |    |    |
| Mathematical Techniques for Optimization | MSO3550     | Х  | Х  |    |    |    |    |    |    | Х  |
| Data Mining                              | MSO3340     | Х  |    |    | Х  |    | Х  |    |    |    |
| Cryptography and Blockchain              | MSO3450     |    | Х  |    |    |    |    |    |    |    |
| Neural Networks and Deep Learning        | MSO3255     | Х  |    | Х  | Х  |    | Х  |    |    | Х  |
| Project                                  | MSO3900     | Х  | Х  |    | Х  | Х  | Х  | Х  |    | Х  |